metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Yung-Chan Lin,^a Tian-Huey Lu,^b* Chang-Yao Li,^c Fen-Ling Liao^c and Chung-Sun Chung^c

^aUnion Chemical Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 300, ^bDepartment of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, and ^cDepartment of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300

Correspondence e-mail: thlu@phys.nthu.edu.tw

Kev indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.008 Å Disorder in main residue R factor = 0.039 wR factor = 0.116 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(2-Methylpropane-1,2-diamine- $\kappa^2 N, N'$)-[tris(2-aminoethyl)amine- $\kappa^4 N, N', N'', N'''$]nickel(II) diperchlorate

In the title compound, $[N(C_4H_{12}N_2)(C_6H_{18}N_4)](ClO_4)_2$, the Ni^{II} atom is coordinated in a distorted octahedron by four N atoms of the tris(2-aminoethyl)amine (tren) ligand and by two N atoms of the 2-methylpropane-1,2-diamine (2-Mepn) ligand. The primary amino group of 2-Mepn at the C-2 position occupies the position trans to the tertiary amino group of tren. The complex cations and perchlorate anions are linked via N-H···O hydrogen bonds, forming one-dimensional zigzag chains along the [101] direction.

Received 16 May 2005 Accepted 17 June 2005 Online 24 June 2005

Contribution No. FB13.

Comment

The effects of coordinated ligands on the thermodynamics and kinetics of ternary complex formation have received much attention because of their importance in studying catalytic reactions of enzymes, including a wide range of metal-enzyme reactions (Hague & White, 1993). In the present study, the synthesis and structure of the title nickel(II) complex, $[Ni(tren)(2-Mepn)](ClO_4)_2$, (I), is reported.

In (I), the Ni^{II} atom is coordinated in a distorted octahedron by four N atoms of the tren ligand and by two N atoms of the 2-Mepn ligand (Fig. 1). The tetradentate tren ligand consists of three five-membered chelate rings in gauche conformations. Atom N6 of 2-Mepn occupies the position trans to the tertiary amino group of tren. Although the Ni-N1 and Ni-N3 bond lengths are significantly longer than the other four Ni-N distances, the Ni-N(tren) bond lengths in (I) are almost equal to the reported values in $[Ni(tren)(en)](ClO_4)_2$ (en is ethylenediamine; Misra et al., 2002), [Ni(tren)(acetato)]- $(ClO_4)_2$ (Fun et al., 1996), [Ni(tren)₂(C₂O₄)](ClO₄)₂ (Castro et al., 1997) and [Ni(tren)(bpy)](ClO₄)₂ (bpy is pipyridine; Lin et al., 2003).

In the bidentate ligand, the bond distance Ni-N5 [2.145 (3) Å] is longer than Ni-N6 [2.092 (3) Å]. This is due

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 1

ORTEP3 drawing (Farrugia, 1997) of the cation of (I), showing the atomlabelling scheme, with 50% probability displacement ellipsoids. H atoms have been omitted for clarity. Atom C6 is disordered over two sites (C6*a* and C6*b*).

to the fact that atom N5 is oriented *cis* to the sterically hindered tertiary tren N atom. The chelate bite angle of the bidentate ligand is comparable with the reported bond angles of $[Ni(en)_3]^{2+}$, $[82.1 (2)^\circ$; Mazhar-Ul-Haque *et al.*, 1970] and $[Ni(tren)(en)]^{2+}$ [82.0 (2)°; Misra *et al.*, 2002]. The molecular packing shows one-dimensional zigzag chains (Fig. 2) of hydrogen bonds (Table 2) between perchlorate ions and amino groups along the [101] direction.

Experimental

Ni(tren)(ClO₄)₂ was prepared according to the literature method of Lin *et al.* (2003). A solution of 2-Mepn (0.31 g, 3.0 mmol) in dry ethanol (50 ml) was added to a blue solution of Ni(tren)(ClO₄)₂ (0.80 g, 2.4 mmol) in dry ethanol (50 ml) at room temperature. The colour of the mixture changed to violet and the solution was continuously stirred for 3 h. The ethanol solution was then evaporated slowly and violet crystals (yield of 55%) precipitated out. Single crystals of (I) suitable for X-ray analysis were obtained on recrystallization from hot methanol.

Crystal data

$[Ni(C_4H_{12}N_2)(C_6H_{18}N_4)](ClO_4)_2$ $M_r = 492.01$ Monoclinic, Cc	$D_x = 1.572 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 6541	T H
a = 14.532 (2) Å b = 9.7074 (13) Å c = 14.823 (2) Å $\beta = 96.167 (2)^{\circ}$ $V = 2079.0 (5) \text{ Å}^{3}$	reflections $\theta = 2.5-28.3^{\circ}$ $\mu = 1.24 \text{ mm}^{-1}$ T = 295 (2) K Plate. light violet	L N N N
Z = 4 Data collection	$0.25 \times 0.20 \times 0.08 \text{ mm}$	N N N
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> : Bruker, 2000)	4172 independent reflections 3560 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 28.3^{\circ}$ $h = -17 \rightarrow 18$	N N N

(*SADABS*; Bruker, 2000) $T_{\min} = 0.780, T_{\max} = 0.906$ 6541 measured reflections

 $\theta_{\text{max}} = 28.3^{\circ}$ $h = -17 \rightarrow 18$ $k = -6 \rightarrow 12$ $l = -19 \rightarrow 18$

Figure 2

The one-dimensional zigzag chains of hydrogen bonds (dashed lines). One component of the disordered O- and C-atom sites has been omitted, as have the H atoms attached to C atoms.

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0953P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.039$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.116$ $(\Delta/\sigma)_{\rm max} = 0.016$ $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}$ -3 S = 0.91 $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$ 4172 reflections Absolute structure: Flack (1983), 290 parameters H atoms treated by a mixture of 1588 Friedel pairs independent and constrained Flack parameter: 0.02 (2) refinement

Table 1

Selected geometric parameters (Å, °).

Ni-N6	2.092 (3)	Ni-N5	2.145 (3)
Ni-N4	2.110 (4)	Ni-N3	2.166 (3)
Ni-N2	2.118 (4)	Ni-N1	2.176 (3)
N6-Ni-N4	92.86 (15)	N2-Ni-N3	81.17 (15)
N6-Ni-N2	175.65 (15)	N5-Ni-N3	87.19 (15)
N4-Ni-N2	82.85 (16)	N6-Ni-N1	100.04 (15)
N6-Ni-N5	80.82 (13)	N4-Ni-N1	93.30 (18)
N4-Ni-N5	173.51 (17)	N2-Ni-N1	80.97 (15)
N2-Ni-N5	103.45 (14)	N5-Ni-N1	89.29 (14)
N6-Ni-N3	98.36 (14)	N3-Ni-N1	160.46 (14)
N4-Ni-N3	92.30 (17)		

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O7B$	0.90	2.21	3.069 (10)	158
$N1 - H1A \cdots O7A$	0.90	2.44	3.278 (10)	159
$N1 - H1B \cdot \cdot \cdot O2^{i}$	0.90	2.41	3.232 (8)	151
$N3-H3A\cdots O6A^{ii}$	0.90	2.26	3.116 (10)	158
$N3-H3B\cdots O4A$	0.90	2.39	3.281 (10)	170
$N4-H4A\cdots O3$	0.90	2.38	3.030 (9)	129
$N4 - H4B \cdots O6B$	0.91	2.26	3.156 (10)	170
$N4 - H4B \cdots O7A$	0.91	2.40	3.160 (10)	139
$N5-H5A\cdots O5^{ii}$	0.90	2.17	3.048 (9)	167
$N5-H5B\cdots O2^{i}$	0.90	2.16	3.056 (6)	178
$N6-H6B\cdots O1$	0.90	2.25	3.138 (6)	167

Symmetry codes: (i) x, y - 1, z; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

There is a positional disorder of atom C6 in the tren ligand. The site-occupancy factors of C6*a* and C6*b* were estimated as 75 and 25%, respectively. The H atoms bonded to C6*a* or C6*b* were positioned geometrically and restrained in both bond distances and angles (the *y* coordinate of atom H6*BD* being fixed to avoid oscillation). The other H atoms were placed in geometrically calculated positions (N–H = 0.90 Å and C–H = 0.96–0.97 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(\text{parent atom})$ or $1.5U_{eq}(C)$ for methyl H atoms. Two independent perchlorate ions show orientational disorder and two split states were assumed: C11/O1/O2/O3/(O4*A* or O4*B*) and C12/O5/O8/(O6*A*,O7*A* or O6*B*,O7*B*). The site-occupancy factors of O4*A*, O4*B*, O6*A*, O7*A*, O6*B* and O7*B* are each 0.5. The C1–O distances of the two perchlorate ions were restrained to normal values. The abnormal O–C1–O bond angles of the perchlorate ions [81 (1)–138 (1)°] suggest further complicated disorder.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Science Council of Taiwan for support under grants NSC 92-2113-*M*-007-045 and NSC 93-2511-S-007-004.

References

- Bruker (1998). *SMART*. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). *SADABS* (Version 2.03) and *SAINT* (version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Castro, I., Calatayud, M. L., Sletten, J., Lloret, F. & Julve, M. (1997). J. Chem. Soc. Dalton Trans. pp. 811–817.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fun, H.-K., Yip, B.-C., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P. & You, X.-Z. (1996). Acta Cryst. C52, 509–512.
- Hague, D. N. & White, A. R. (1993). J. Chem. Soc. Dalton Trans. pp. 1337–1341.
- Lin, Y.-C., Lu, T.-H., Liao, F.-L. & Chung, C.-S. (2003). Anal. Sci. 19, 641–642.
 Mazhar-Ul-Haque, Caughlan, C. N. & Emerson, K. (1970). Inorg. Chem. 9, 2421–2424
- Misra, T. K., Chen, L.-H., Lin, Y.-J. & Chung, C.-S. (2002). Polyhedron, 21, 2045–2053.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.